Advertise with us. Learn how here

How AM was successfully utilised in Boom Supersonic’s XB-1 demonstrator jet

Updated: Jan 21

Boom Supersonic’s XB-1 supersonic demonstrator aircraft was unveiled last year and featured twenty-one AM parts (Courtesy Boom Supersonic)

Since the unveiling of Boom Supersonic’s XB-1 supersonic demonstrator aircraft in October 2020, featuring twenty-one additively manufactured parts, Velo3D, Campbell, California, USA, has published a case study on how it collaborated to produce the AM flight hardware components using its Sapphire metal Additive Manufacturing machine.

While the XB-1, as well as Boom Supersonic’s future Overture supersonic airliner, echo the shape of the earlier Concorde, the new demonstrator presented an opportunity to explore more advanced designs and manufacturing technologies than those available to Concorde engineers.

Knowing that additively manufactured parts were already used in many current aircrafts, the Boom Supersonic design and engineering team decided early on in the project that Additive Manufacturing would be used to produce some of the most complex part designs.

“There are many reasons for choosing that technology over others,” stated Byron Young, Boom Supersonic Engineer. “There’s a great deal of design flexibility in using 3D-printed materials. You might be able to achieve similar results by making multiple parts and welding or bolting them together, or by using complex carbon-fibre tools. But that requires a lot of engineering time, and often more manufacturing time as well.”

“Engineers are always trying to implement time-savings into a job,” he continued. “Much of the time and effort in aircraft design goes into joints, the interfaces between components. By designing directly for AM, we can reduce the number of parts and joints, which also reduces time and net effort. And part consolidation cuts out significant amounts of weight, something that’s a major priority in aircraft design.”

Lightweighting benefits offered by geometric freedom

Many of Boom Supersonic’s AM parts are related to channelling air via complex vanes, ducts and louvres. Some of the air being routed through these parts exceeds 500℉ (260℃). The geometric complexity of these parts required a surface-based design approach.

Young added, “If fast-moving air is touching it, we care about that surface from an efficiency and performance standpoint. So when designing these parts, you generally start with aerodynamic profiles and then trim, fillet, and thicken surfaces to create the solid part itself. The resulting parts are very complex—which meant they definitely needed to be fabricated through AM.”

Gene Miller, Velo3D’s Applications Engineer, worked closely with both Boom Supersonic design engineers and Duncan Machine Products (DMP), Duncan,